Finding structure in large datasets of
particle distribution functions using
unsupervised machine learning
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Unsupervised Machine Learning

Allows finding hidden structure in large data sets with little or no
apriori knowledge

A lot of focus on “supervised” machine learning, i.e. learning using
labeled data

unsupervised learning “next frontier” [LeCunn 2016]

Examples include:

* Clustering (K-means, Gaussian Mixture Models,
hierarchical, )

 Dimensionality reduction (PCA, ICA, T-SNE)
 Neural networks (autoencoders, adversarial networks)



K-means clustering
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Example series k-means clustering from
neuroscienc

Original data series

"N =

Detect neurons with time-
series which have high
correlations

50 100 50 200 250

** K-means clustered series

Freeman, Nature Methods 11, 941-950 520142 o o -
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XGC1

e Full-f, gyrokinetic turbulence
code focused on the edge
(pedestal + SOL):

 Neutrals, collisions, sheath
physics, etc.

* Massively parallel, requires

100M+ CPU hours (HPC) How to extract useful
information?
* Generates TB's of data per - ::tsllllr:l:lﬁ:::tlld:l?cill"lll'le
simulation learning

?)PPPL
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Apache Spark + Thunder: Image and time series
distributed computing streamlined

APACHE

Spark NEeF

PROS CONS
* Distributed computing, easily ¢ Networking slower than MPI
scale up analysis e Complex communication

patterns are difficult to
implement (better for
* Resiliency embarrassingly parallel)

e Available on NERSC * Learning curve

 Simple interface, Python bindings

 Machine learning libraries (MLIib)
optimal for parallel processing

B ________________________________________________________|
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Spark code, reading of "Y
scientific data SpQrK

. import adios as ad
e Read data in batches from import numpy as np

from pyspark.mllib.clustering import

parallel file system, split in-place | pisectingkmeans
for individual records

-~

™

def read(ind):
f = ad.file('/path/to/file")
data = f['data_name'][:,ind[0]:ind[-1]+1,:]
f.close()
return data

 Single node (22 cores) gave data
reading scaling of 1 GB/s up to

def split(data):
33 GB for d in np.rollaxis(data,1):
yield d
Nnodes = 10
* Machine learning algorithm NcoresPerNode = 22

Nparts = Nnodes*NcoresPerNode*4

SyntaX Sim ple’ Sim ||a r tO SCi klt- indices = np.array_split(np.arange(0,Nrecords),Nparts)

|ea n, but Spa rk d I IOWS SCa I | ng rdd1 = sc.parallelize(indices,Nparts)
rdd2 = rdd1.map(lambda v: read(v))
rdd3 = rdd2.flatMap(lambda v: split(v))

model = BisectingKMeans.train(rdd3, k=6)

f
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Coherent phase space structures (blobs, holes,
clumps, etc.)
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Various opinions on
importance/long-term
existence of phase space  V./Vw

structures in strong turbulence
[Dupree Phys Fluids 1972, Krommes
PoP 1997,

Kosuga NF 2017]

Vi [ Vi,
Investigating single PDF from simulation can be misleading
due to noise

Apply K-means clustering to determine regions in velocity
space which correlate well




Spark Motivation - can we find common
signatures in velocity space?

Distribution functions

Density fluctuations
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Synthetic data created to test k-means clustering with
plasma distribution functions

 Maxwellian distribution function, with two square regions of
velocity space with sinusoidal modulation:

cos(2mx) —1.4 < /vy < —0.5, 0.75 < v, /oy < 1.22,
cos(bmz) 1.6 < v /vy < 2.6, 2.25 < v fuy < 2.72

 K-means clustering with k=3 correctly separates the velocity space
_regions which vary together oo
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Bisecting K-means finds no direct structure in full(,\Z
edge region Soark

XGC1 distribution function set from ITER simulation, 500 GB/time step (only
subset from single time-slice used,

covering full pedestal edge region, 32 x 31 x “8M = ~60GB)

. Bisecting K-means algorithm avoids issue of cluster initialization leading to
local minima [Steinbach, 2000]

. Returned clusters noise based, subsequent runs change clusters found

[R.-M. Churchill, IEEE Proc. of NY Sci. Data Sum., 2016]
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Bisecting K-means finds ring-like structure in

turbulent spatial regions ¢
Spark’
XGC1 distribution function set from ITER simulation, 500 GB/time step (only
subset from single time-slice used,

covering only high turbulence regions in pedestal/SOL,
32 x 31 x ~“60k = ~450MB)

. Bisecting K-means algorithm avoids issue of cluster initialization leading to
local minima [Steinbach, 2000]

. EIectron distribution function shows ring-like structure in spatial regions of
igh turbulence — but why? a0
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[R.M. Churchill, IEEE Proc. of NY Sci. Data Sum., 2016]
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K-means clustering after matching velocity space grid

reveals more variable structure

 Renormalize all v-space grids
onto same normalized grid

1.5¢

 Rerunning K-means clustering ifl.o
reveals more intricate structure

0.5

* High energies (E>E,)

show break near 0ol

trapped/passing
boundary
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Summary

 Unsupervised machine learning can be used to search for
structure in large data sets

 Apache Spark provides a simplified framework for distributed
computing, including machine learning libraries

« K-means clustering on electron distribution functions from the
gyrokinetic code XGC1 shows distinct structure in highly turbulent
regions

. Partial ring-like structure
. separated at higher energies near the trapped/passing boundary



Background Slides

Nov 5, 2018 APS-DPP 2018 Portland, OR 16



’ 4
L\\.‘ /t/ /\_ UD{A\L\: -\ (""{'L‘"/("\

“While the intricate details of the
structures are hidden, the essence of the
structures are revealed all the while
making the imposing and solid structure
seem airy and nomadic”
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Future directions

Generative Adversarial Networks
(GANS)

* InfoGAN: Maximizes mutual
information for latent variables,
allows for disentangled

representation
[Chen, NIPS 2016]
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XGC1 core f distribution functions show little
velocity space variation

f distribution functions from
random core vertices were
analyzed with K-means
clustering

As expected, little variation was
found




